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Crossover behavior in a communication network
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We address the problem of message transfer in a communication network. The network consists of nodes
and links, with the nodes lying on a two-dimensional lattice. Each node has connections with its nearest
neighbors, whereas some special nodes, which are designated as hubs, have connections to all the sites within
a certain area of influence. The degree distribution for this network is bimodal in nature and has finite variance.
The distribution of travel times between two sites situated at a fixed distance on this lattice shows fat-fractal
behavior as a function of hub density. If extra assortative connections are now introduced between the hubs so
that each hub is connected to two or three other hubs, the distribution crosses over to power-law behavior.
Crossover behavior is also seen if end-to-end short cuts are introduced between hubs whose areas of influence
overlap, but this is much milder in nature. In yet another information transmission process, namely, the spread
of infection on the network with assortative connections, we again observed crossover behavior of another
type, viz., from one power law to another for the threshold values of disease transmission probability. Our
results are relevant for the understanding of the role of network topology in information spread processes.
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[. INTRODUCTION works at numbers that are significantly higher than those in
randomized networks.

In recent years there has been an unprecedented rise of It is known that the nature of the network topology sig-
interest in the study of networks and their properfi<]. nificantly affects the manner in which spread processes occur
These networks can be basically regarded as a collection @n networks. A striking example of this was found by Klein-
nodes linked by edges. The nodes represent individual entberg, where a decentralized algorithm was able to find very
ties, while the edges represent interaction between any pashort paths(resulting in very short delivery times for mes-
of nodes in the network. Many natural systems, as well asagesfor a two-dimensional network where long-range con-
engineered systems, can be represented by such networkections followed the inverse square law. Another example
Some examples of such networks are found at large spatialhere the topology of the network had a significant role to
scales, e.g., the internet or the power grid, while others are aflay is in the spread of computer viruses. It was seen that
single organismic levels, e.g., metabolic pathw§ys-3].  computer viruses can spread on the SF networks with zero
The structure and connectivity properties of such networksransmission threshold.5,16] and that networks of differing
and the capacity and degree of connectivity of their nodesopologies have differing degrees of vulnerability to attack
have important consequences for processes which occur ¢a7-19 and different extents of error tolerance. The impor-
the network. Some examples of such processes are messagace of such studies from the point of view of applications
transfer in communication networks, the spread of infectiousgs obvious.
diseases in social networks, the spread of computer viruses in In this paper, we set up a communication network on a
computer networks, and avalanche spread in load-bearingvo-dimensional lattice. Communication networks based on
networks[4-9]. Such network studies have been seen tawo-dimensional lattices have been considered earlier in the
have potential applications in different fields of science anctontext of search algorithnig1], as well as in the context of
technology, including epidemiology and ecology. traffic on lattices with hosts and routdi20—24. The lattice

Several different classes of network topologies have atwe consider in this paper has two types of nodes, viz., regu-
tracted recent interest. These include small-wé8W) net-  lar nodes and hubs. Each regular node on the lattice has
work models which have short paths between any two nodesonnections with its nearest neighbors, whereas some special
and highly clustered connectiorjd0], and their variants nodes, which are designated as hubs, have connections to all
[4,7], generalized families of small-world networkkl], and  the sites within a certain area of influence. Thus, nodes fall-
scalefree(SF) networks which incorporate the existence of ing within the influence area of a hub can directly interact
“hubs,” viz., nodes with many more connections than thewith the hub, or vice versa. The degree distribution of this
average nodgl2,13. There have also been attempts to char-network is bimodal and has finite variance. We examine two
acterize the topology of natural networks, using measuredistinct spread processes on this lattice network as functions
such as average path lengths, clustering coefficients, degre¢ hub density. The distribution of travel times for a message
distributions, and the existence of “network motif§14], transmitted between a fixed pair of sites for this lattice shows
viz., patterns of interconnections occurring in complex netfat-fractal behavior as a function of hub density. If extra

connections are now introduced between the hubs so that
each hub is connected to two or three other hubs, the distri-
*Email address: braj@chaos.iitm.ernet.in bution crosses over to power-law behavior. The end-to-end
"Email address: gupte@chaos.iitm.ernet.in short cutting of hubs whose influence areas overlap also in-
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duces crossover, but this is much milder in nature. We also ° e e 9o ece 0000000000
examined the process of disease transfer on this network, a ° | AN
. . --O: ¢ 0 0O O ¢ O O ¢ 0O © o 0

process that differs from message transfer in the fact that it is :
. o o 0 0 0 0 0 0o 0 0 o © © O O
a probabilistic process and not a directed transfer between a Gt 0060000000000 e5
source and a target. Here again the transmission threshold _ &/ [ A NN 0 . 0 0 0 0 6 0 06 6 0 0 o o o
plotted as a function of hub density crossed over fromone _ . . . 6 6 0 0 06 06 6 06 6 6 6 6 6 0 0 o o
type of power-law behavior to another on the introduction of  , ¢ o o 6 © 6 6 6 6 6 0 6 0 o odo o0 o o o
two extra connections per hub. 6 60000 0 0o FUOTTTT g o ¢70 0 0 o o
In Sec. Il we set up the model of the communication o o o6 o o 0 0 0 6 5 06 0.d 6 o $6o o o o o
network. In Sec. Il we discuss the problem of directed mes- o o o o 0 o 0 o b » ddcod50 0000
sage transfer between source and target nodes on this net-c o o o o 0o o o b b{¢ o d o ofo ¢ 0o 0 0 o
work. In Sec. IV we discuss the spread of informationasa © ¢ o ¢ o o o o & i -5.-#C0 © © o o ©
random process as in the spread of disease. The last section® © © © © © © o o omoroy 4o © ¢ 0 0 00
summarizes our conclusions. A R e
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As stated in the Introduction, the proposed network isa o o o 5% 0 0 6 0 06 06 0 0 6 6 06 0 0 0 o
two-dimensional lattice of nodes where every node is con- o ¢ o & b.o.6..0..6 06 6 6 0 6 0 6 6 0 0 0 o

nected to its nearest neighbors. A certain fraction of the total . . .
nodes are designated as hubs, viz., as nodes which have con—FlG' L Atwo-dumer_nsmna_l lattice .Of 2121 nodes. The top left
nections to all nodes within their area of influence, where the o o' shows a huba filled circle which is directly connected to

! Il its constituent nodes within the square shown by the dashed

area of influence is defined as a square area around the th es. The side of the square is approximately equalko shown

which acqommoda}tes (Q‘L_l)z nodes,_ including the hub for k=2. The square shown is called the influence area of a hub. A
node,k being the distance in lattice unitsU) from the hub  e4jar node that is neither a hub nor a constituent node has four
to the outermost node in any principal direction within theedges connected to its nearest neighkisiown in the top right
square. All nodes within the influence area of a hub areomey. A typical path between a source nofland a target nod@
termed its constituent nodes. A schematic representation ofig shown with the labeled sites. Note that it passes through three
hub node is shown in Fig. 1. These hubs are randomly chonubs, namelya, b, andc (filled circles. After scheme | the distance
sen on the lattice maintaining a minimum distankg, be-  betweenb andc is covered in one step. The shortcut is shown by
tween any pair of hubs. This parametet,(,) controls the the dashed arrow frorh to c.
extent of overlap between the influence regions of the hubs.
See the two hubsd” and “e” in Fig. 1. The distance be- overlap. Figure 2 shows a typical distribution of the degree
tween them is unity, and their influence regions are maxiof connectivity of nodes of all types for a lattice of size
mally overlapped. As the number of hubs on the lattice goe§00x100, k=3, dy,j,=1, and the hub density is 4.0%. As
up, the number of connections that a constituent node ca@xpected, there are two peaks in the distribution: one, a sharp
have also goes up, as it increasingly acquires links with moréne, at (k+1)?
hubs because of the overlapping of the influence regions of-1 corresponding to the degree of connectivity of the hubs,
the hubs. Thus the model takes into account the fact thaand the other around @he degree of the regular sijesith
local clustering in a geographical neighborhood can occuf spread around the value. This spread comes from the con-
for many realistic models. stituent nodes of hubs with overlapping regions of influence.
The hubs in this model connect to a fixed number oflt is clear that the degree distribution does not fall into either
nodes, as in many realistic environments, where the numbef the two broad classes of networks—the SW and SF net-
of links that can attach to a given hub is limited by the
number of ports to the hub. We examine the influence that
the presence of hubs exerts on the connectivity distribution
of the network. In the absence of the hubs each node has the
same degree of connectivity and the degree distribution 021
(where the degree of a node is the number of nodes it is
connected tpis a & function with a single peak at 4. How-
ever, the introduction of hubs leads to completely different
connectivity patterns for the network. Due to the presence of - 1
hubs, the connectivity of the nodes ranges fronffat the 0L f
regular nodesto (2k+1)?>—1 (for the hub$. The degree of 0 10 20 K. 30 40
the constituent nodes lies between the two extremes, being
equal toC+4 where the constituent node lies in the over- FIG. 2. A typical connectivity distribution for the proposed
lapping influence area & hubs. The degree of the constitu- communication networkK, gives the degree of connectivity of a
ent nodes is thus a function of the hub density, which connode withK,, other nodes in the lattice. The lattice size is XaMO,
trols the extent to which the influence areas of different hub&=3, and the hub density is 4.0%.
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works. It also differs from the connectivity patterns of the 100 ! !
random graphs(See Ref[13] for the connectivity distribu- | |

tions for the SW and SF networks as well as those of random 80r i
graphs, and Refd.25,26 for scalefree models with local

clusters and geographic separatjofhe variance in the de- 60r il
gree distribution of our model is finite unlike that in the case y

of scalefree networks where the variance is infinite. This fact 407

can have very important consequences for information

spread processes on a network. The importance of the vari- 201 I
ance in the spread of disease has already been noted in the : )
case of scalefree networks. It is therefore interesting to in- % 20 20 0 20 100
vestigate spreading processes in models such as ours which X

do not. have infinite variar!ce, and to compare them with FIG. 3. Typical travel paths between sou®and targefl. The
spreading processes seen in the case of other networks, e.gpe| «0” indicates a path on the original lattice) = a path on the
scalefree networks with and without local clustering in agcheme | lattice and 11" indicates a path when the lattice was
geographic neighborhood. modified by the scheme II. The lattice distance between for the

We now study two types of communication problems insource and target node is 142 LU. The lattice size isXDmD, k
this network, viz., the problem of message transfer and that 3, and the hub density is 0.5%.

of the spread of infectious disease.

of B. The second recipient node éfand the first recipient
lll. THE PROBLEM OF MESSAGE TRANSFER node ofB here do not take part in the message transfer. This
scheme, in essence, introduces a single short cut for two
ops per pair of overlapped hubs in the travel path. A typical
ravel path for this scheme is indicated by the labEl th
Ig. 3. As we will see in the following section, the introduc-

We study the transfer of a message from an arbitrar
source node to an arbitrary target node on the lattice. Eac
(ordinary node transfers the message to the node nearest

it in the direction which will minimize the distance from the .. . : )
) ion of this scheme, leads to an increase in the travel speed

current message holder to the target. When any constitue C . .
nd a reduction in the message delivery time. However, the

npde of a hUb.'S the current message hplder, then the r‘Oézf;ectual reduction in travel time for a given valuekogrucially
directly sends it to the hub. The lattice distance between th {apends on the extent of overlap, which in tum depends on
sender node and the hub is just one hop because of dire{:n I ) '

o : e minimum distancd,,,;, between hub nodes, as well as on
communication between them, thereby speeding up the prgbe hub density. For e%nmple for the travel phttf Fig. 3
cess of message transmission. If the hub is the curre o ' L9
message holder the message is forwarded to one of the coﬁr—r:é' ?snigtagn?af Srl:l?s overlap so that the reduction in travel
stituent nodes within its influence area, the choice of con- The ]minimum diétance between any pair of hubig
stituent node being made by minimizing the distance to the, . . in
target. Thus the presence of hubs on the lattice increases t gCIﬁSS;Tr? E)?Jr]rgr?e?\fvg\rllfrllggrb:r:\;/viigizheelégtluaegiee(;er?d%ns of
message trgnsfer Sp?ed alrc]mg the pa:]h,banfd"the t%tal trar\g (fnsity a hub distributiO.n witkd,,,;,=1 on the lattice guar-
time depends primarily on how many hubs fall on the pat ’ . min ) ;
for the given influence radius A typical travel path for such antees that the separation between any pairs of hubs is equal

a lattice is shown in Fig. 1 and is also indicated by the labefC O greater than Lltis easy to see that the areas of influ-
“O” in Fig. 3. ence of a pair of hubs witl,,;;,=1 have the maximum

overlap. See Fig. 1. On the other hanly,;,=2k+1 for a
givenk results in no overlapping hubs on the lattice. Scheme
| cannot be implemented for this case. Distributions of hubs
It is clear that the presence of hubs on the lattice makewith other intermediate values df,,;, have overlaps that lie
the process of the message transfer faster than the situatibetween the two extremes.
when there are no hubs. However, there is further scope to Scheme IlIn the second scheme to speed up the commu-
enhance the speed of transmission. Here we discuss twacation process we connect individual hubs with a fémv
speed enhancing schemes which can be practically applihis paper, typically two or threeother hubs selected at
cable to the communication process. random. These connections, where nodes preferentially get
Scheme IWhenever there is an overlap between influenceconnected to nodes having a similar degree of connectivity
areas of hubs, then the message is transferred from the first the network, are called assortative connectif®g,2§.
hub to second, then to the third, and so on. Intermediat&/nder this scheme, when a hub becomes the current mes-
constituent nodes do not participate in the process of mesage holder, it first tries to send the message through one of
sage transfer towards the target. For example, if there is aits assortative linkages to another hub which, among all ac-
overlap between the influence regions of two hubs, namelyquaintances of the hub, happens to be the nearest to the
A andB, along the path, then after receiving the message thtarget. If the current message holder hub cannot utilize its
first recipient constituent node @éfdirectly forwards itto its  assortative linkages because of unsuitable locations of the
hub A, which directly sends it t®, from which the message end-point hubs, the message is sent to the constituent
is subsequently sent to the second recipient constituent nodmde nearest to the target. A typical travel path between

A. Speed enhancement schemes
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source ‘S” and target “T” is indicated by the label fl” in 700
Fig. 3. Here the Manhattan distanbg; between source and
target is 142, where the Manhattan distance is defined as
Dy=|is—it|+]|js—jt| and (s,js) and (t,jt) are the coor-
dinates for the source and the target, respectively. However
the travel path labeletl needs just 50 steps to travel be-
tween the source and target. In comparison, the path labeled
O needs 95 steps and that labeledeeds 94 steps. ool =
The simulations are carried out as follows. Two nodes are 0 1000 2000 3000 4000
selected as the source and the target at random from a lattice No. of Hubs
of a given size. The distance between them, denoted fy FIG. 4. A plot of average travel times,,, vs number of hubs
is chosen to be the Manhattan distance. The number of Steps; the original network(diamonds, the scheme | networkplus
required in delivery of the message from the source to thgjgng, and the scheme Il networloxes for two extra assortative
target are counted for 50 realizations of hubs for a given huRonnections andcrosses three extra assortative connections per
density. Then, the two nodes, i.e., the source and the targftib. Hered,,,= 1. The best-fit line for the original networklia-
nodes, are replaced by two other nodes selected at randofbndg was given by the functiori;(x) = Q,exy —A;x*1], where
from the lattice, keepin@®; unchanged. Again the message a;=0.4482,A;=0.0142, andQ;=730. The behavior of,,4 for
transmission steps are counted for the same number of hube scheme | network is slightly different and the exponential
realizations. This is repeated for 1000 pairs of source anflinction needs a mild power-law correction given Wy(x)
target nodes for a particular hub density. It should be noted Q.exd —Ax*?]x"°, wherea,=0.46, A,=0.0145,Q,=735, and
that the order of averaging makes no difference. The value of=0.00005. For scheme Il networks the best-fit lines were given
d.i, andk used throughout the paper are 1 and 3, resped? the functiong(x)=Sx#, where 8=0.2 andS=875 (boxes,
tively, unless otherwise specified. 800 (crosses

n
[
<

Avg, Travel Times
(%)
S
S

g(x)=Sx #, where=0.2 andSis a positive constant and
Th ¢ | i betw dat thus shows power-law behavior. We note that the same
€ average lravel ime between a source and a argEtower law fits both sets of scheme Il data.

fixed distance apart is a good measure of the efficiency of th Figure 5 shows the same data as Fig. 4 on a log-log plot

network for message transmission. This clearly depends Ofere the drastic difference seen for the behavior of average

the. density of hubs in the network, as well as on the Way Myavel times in the case of networks with scheme I opera-
which these hu_bs are connectc_ed. We study th.e behavpr ifonal compared to the other two networks can be clearly
average travel times as a function of hub density for a fixe een. The log-log plot of,,, against the hub density is a
Manhattan distanceD; between source and target. Our ' avd

. . ; ! straight line with slopeB=—0.2. Thustavg~p;ﬁ, shows
simulations were carried out for a lattice of 50800 nodes, power-law behavior. It is again clear that the same power law
Ds=712, for the original networks as well as the networks

modified by schemes | and 1. Fiqure 4 shows the de eni_s seen for the two scheme Il cases. Thus the addition of a
y N g ; P very small number of assortative connections per hub has
dence of the average travel timeg,q, as a function of hub

density for th iginal networkedi ds for d. =1 induced a crossover to power-law behavior from the fat-
Tﬁns' y tor f on?lpa nedwor lamon otr_ ”mi“_ tH hf actal behavior seen in the nonassortative cases. The rate of
€ average lravel imes decrease exponentially as € Nyhy ot of average travel times with increase in hub density is

dens_|ty Increases. The data can be fitted well by the EXP%uch faster for the assortative case even in the case of low
nential function [29] f(x)=Q.exd —Ax*], where a;

=0.4482,A;=0.0142, andQ,=730. This can be rewritten

in the formf,(x) = Q,exf — (X/xy)*], wherex, is (L/A;)Ye1

and has the approximate value 13 259. Expanding this we get
f1(X)=Qq[1— X+ (X%/21)—-..], whereX=(x/xg)".. Re-
taining terms to the lowest order, we see that the dependence
of average travel times on hub density is given tQy,
le(l—apﬁﬁb), an instance of fat-fractal-like behavior. We
plot the average travel times as a function of hub density on
the same plot for the scheme | and scheme Il networks. The
behavior oft,, 4 in the case of scheme | networlsus signs 100 ‘ s
is slightly different from that of the original network case, 10 100 1000

and the exponential function acquires a mild power-law cor- No. of Hubs

rection. The data for scheme | networks is fitted well by & g1, 5. The same data as in Fig. 4 is plotted on the log-log scale.
function f,(x)=Q,exd —Ax*|x %, where a,=0.46, A, These plots clearly show crossover in scaling behavior from the
=0.0145,Q,=735, and5=0.00005. Scheme Il networks fat-fractal type seen for the original as well as the scheme | net-
show distinctly different behavior. The scheme Il networkworks to the power-law behavior for the scheme Il network. Note
data(boxes for two assortative connections and crosses fahat the slope of the two parallel linéthe scheme Il netwokis
three assortative connectionsan be fitted by a function -0.2.

B. Crossover behavior
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FIG. 7. The distributions of paths in terms of travel times for
D¢=712 on a lattice of 508500. The distributions shown are for
dnin=1. The curve indicated byA” is for a total of 100 hubs and
the curve ‘B” for a total of 5000 hubs. Plots with diamonds and
100 ~ - . s plus signs use the original network data while the boxes and crosses

No. of Hubs correspond to scheme | data.

FIG. 6. The parameter values are the same as in Fig. 4 except
for the following. First, the influence area for this figure is circular
with a radius ofk. Second, every node of the lattice network has ~ The probability distributions of travel times on the net-
been displaced by-0.1 from its earlier position as in Fig. 4. The work for the three cases above can be seen in Figs. 7 and 8.
functions for the fitted lines arB(x) =635 exp(-0.0104%4% for It is clear that as hub densities increase, the peak shifts to-
diamonds(no assortative connectionsand G(x)=735 "% for  wards short travel times for the original network. When the
pluses(assortative connections message was transmitted using scheme |, the distribution
changes very slightly with virtually no effect at low hub
gensities. However, when scheme Il was operational, the dis-

C. Distribution of travel times

hub densities. Thus the addition of assortative connections: . i S
can increase the communication efficiency of networks with-trIbUtlon showed a marked changgee Fig. & The distribu-

out increasing the number of hubs in the network es eciaIItions of Fig. 7(the original lattice and schemgare sharply
at low hub d(gnsities P )f)eaked about a mean travel time and are symmetric about the

Wi te that th ¢ tat-fractal behavior t mean whereas those of Fig. 8 show a much wider spread and
N Ino eb ﬁ e crossover from fat- ract? ne aV';)rhoare skewed. There is also a difference between the two dis-
power-law behavior Is Insensitive to perturbations of they;p, iions as shown in Fig. 8. At low hub densities the dis-

regular lattice geometry. We verified that up to 10% variationyip tion is bimodal, whereas the bimodality is smoothed out
in the x andy locations in the location of the hub nodes 4t higher hub density. The right peak is reminiscent of the
makes no difference to the crossover behavior, although thgistribution for a lattice without any hub-to-hub connections
numerical values of the exponents change. Similar perturbagt jow hub density. Overall, the new distribution indicates
tions to the location of all the nodes in the lattice also makenhat even sparse hub-to-hub connections are quite capable of
no difference to the existence of the crossover. Changing thducing short paths at all hub densities. The distribution also
shape of the influence areas from square to circular regiongyifts to lower values of travel times demonstrating the suc-

perturbation to the overall degree distribution. We note that

the crossover is robust to this change, as well. Figure 6 0.06
shows the behavior of the hub density for the lattice network ' 4
with a perturbed node distribution with a circular influence "
area for the hubs, with all other parameters as in Figs. 4 and 0.04 0y
5. Itis clear that the crossover is completely stable to pertur- PO |0 5 e,
bation. The travel times can be fitted by the functiéi() s e N
=635exp(0.0104°41Y for the perturbed lattice with 0.02 R B
no assortative connections, and by the functiG{x) = .
=735 %185for the perturbed case with assortative connec- A
tions. We note that the exponefiinhow takes the value 0.165 0 200 400 600

from the value 0.2 seen earlier, and the power-lay Travel times. t

changes to 0.417 from the value 0.4482, but the conﬂt@pt FIG. 8. The distributions of paths in terms of travel times for the
bafe'Y changes from, = 0'0;42 toA;=0.0104, a change N same value oD ¢, when scheme Il is operational. Diamonds are for
the third place after the decimal. Thus the fat-fractal behaviog, o4l of 100 hubs, plus signs for a total of 200 hubs, and boxes for

of the typeC(1—x7) remains unaltered due to the perturba-a total of 5000 hubs. The lattice sizRy,, andd,;, are the same as
tion as does the power-law behavior for the network within Fig. 7. The distributions show bimodaligwo peak$ at lower
assortative connections. Thus, the crossover is robust to petiub densitiegdiamonds and plus sighsand this bimodality disap-
turbation. pears at higher hub densitiésoxes.

<
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IV. COMMUNICATION NETWORKS VERSUS SPREAD =5 T=10 T=15
OF INFECTIONS

The message transfer problem discussed above involves A
the consistent directed transfer of a message towards a target.
Each temporary message holder transfers the message, with
probability one, in the direction which takes the message égfl

towards the target. Other types of processes of information £
spread such as the spread of computer viruses, infectious B
disease, rumors, popular fashions, etc. have distinctly differ-

ent mechanisms of spread. These processes are not directed
processes, and incorporate stochastic elements in the mecha-

nism of spread. Hence communication networks which may ¥
be very efficient for information dissemination of the first c
type, may not be at all, or less suitable, for the second kind. E

In this section we examine the spread of an infection in a
population of susceptible individuals for our network. The
population contains both infected and susceptible individu- FIG. 9. The spread of infection on a lattice with no hubsp
als. The individuals constitute the nodes of the network, andow, labeled A, on a lattice with hubgmiddle row, labeled B and
social interactions among them constitute the edges by which lattice with hubs with two assortative connectighsttom row,
infection can be transferred from one node to another. A2beled Q. Snapshots of the infection spread are taker-a5,
similar model is also applicable to the spread of computerlO' fi_ndt=15 (column labels for each case. Here the infection
viruses. We consider a single point entry for infection in ourProbability p=0.25.

study. _ o Hence the study of disease spread on other types of networks
Many recent studies have focused on this kind of spreadych as ours, which have finite variance, is important.
of diseases on networki}—8,15,16. A susceptible indi- As mentioned above, network topologies also determine

vidual can get infectedwith some probabilityonly when he  the choice of effective immunization strategies. Recent stud-
directly or indirectly encounters infectious individuals in the ies on immunization strategies for efficient and successful
population. The structure of the contact network has imporeontrolling of epidemics on SF networks have unanimously
tant implications for three things. The first is the rate atadvocated the immunization of the most connected nodes
which an infection can spread across the network, the secori@7,34,33. The choice of immunization strategy would have
is the transmission threshold, i.e., the smallest probability ofo be quite different in the case of networks where the node-
infection with which the infection can spread to a significantconnectivity distribution is not of the SF type. Even in the
fraction of the nodes of the network, and the third is thecase of SF networks, immunization strategies which concen-
choice of an effective immunization strategy. trate on immunizi_ng the most _connected nqdes do not take

Recent studies of disease spreading viruses or comput8f0 account the finite probability that a few infected nodes,
virus spreads on networks of the SF type show that the pog¥hich may not be the most connected nodes on the network,
sibility of these viruses being persistent in the populationMight have long-range connections to new regions of the
and of their being resurrected causing repeated epidemics, f'Sceptible population, afnd he?lc‘?' CIOU|d “?”Sm!t thehdlsease
almost independent of any transmission threshbf. Thus, ]EO regions quite distant from their place o origin where a
in the case of the SF networks, all that is needed for th resh ep@em_lc can ensue. Our netwqu, \.Nh'Ch Incorporates
: . ' S eographic distance and local clustering, is useful for such a
infection to spread throughout the population is the occur

X ) ) : > studly.
rence of a single-time point entry of the infection into the v sy died information spread via an infection process of

population. Since it has been argued that in the case of SeXyke gysceptible-infected-recovered type on this network. The
ally transmitted diseases, particularly that of the HIV/IAIDS y1cess has the following feature@; all nodes are equally
infection, the underlying contact networks have scalefregysceptiblegii) infection always starts from a single sité)
charactef30], this result also has implications for the spreadan infectious node can infect any of the nodes it is connected
of such diseases. However, the existence of a vanishing with probabilityp, (iv) this transmission probability is the
threshold in the case of human disease does not fit well witBame, i.e., it has the valygirrespective of whether the in-
the conventional epidemiologist’s viewpoint. The infinite fected node is a hub or an ordinary node, @&ndone of the
variance of the node connectivity in the SF network has beenodes get infected twice. Also once a node becomes infected,
identified as the causative agent for the vanishing thresholid remains infected until it infects any one of its neighbors.
seen in such networki27,31,32. Thus, though traditional Here we assume that within a typical infectious period an
epidemiology acknowledges the importance of heterogeneitinfected node certainly infects, at least, one susceptible node.
in the rapid spatial spread of diseases such as HIV/AIDS, thén this study we restrict ourselves to a single episode of
extreme heterogeneity seen in SF networks may not makepidemic break.

them good candidates for modeling other kinds of infection We study the manner in which the infection spreads on a
in human or animal populations, where social contacts gent00x 100 node lattice. Figure 9 shows the manner in which
erally do not conform fully with the SF characterisfi;,33]. the infection wave front from a single infected node travels
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FIG. 10. The behavior of the threshold values of transmission ubs
probability p;,, as the number of hubs increases. The best-fit line for
plot I (for the original latticg was drawn using the functio®(x) FIG. 11. The plot shows the variance in connectivity as a func-
=Dexd —Mx{](x+1)"%+C;,. The behavior for the lattices with two tion of hub density for two cases—the originaliamond$ and
assortative connections per hub, shown by plothad to be fited  scheme Il networképluses. The lattice size is 100100,k=3, and
using another functiorH (x)=Dexg —Mx¢](x+1) %2+C,, where  two assortative connections per hub for the strategy Il case.
D=0.25, M=0.0054, {=0.975, £,=0.065, ¢=-0.13, C,

=0.04 =0. . . .
0.046, andC,=0.036 and the scheme Il case. However this crossover is a gentle

) ) change from one power law to another, unlike the drastic
on a lattice with no hubs at=5, t=10, andt=15 (op  change seen for the behavior of the average travel times for
row, labeled A, ona lattice with h“b$'.‘"“dd"? row, Iabe_led the same case. The change is more pronounced at low hub
B) at the same time steps, and a lattice with hubs with tWOdensity as in the other case. The reason as to why the cross-

assortative connectio rottom row, labeled £ The rapid over is drastic in the case of the message transfer process but
spread of infection in the bottom row can be very clearly. oo . : o
is more gentle in this case of the infection spread may lie in

seen. All the results in this section study infection spread for[h fact that in th ¢ di d th .
a 100x100 lattice with 400 hubs with,,;,=1 andk=3. € Tact that In the case ot disease spread, the variance ap-

Other parameters are given in the figure caption. Each run {ears to b_e the crucial quant?ty which determ.ines the thresh-
taken for 400 time steps. o_Id pehqwor. We plot the_ variance as a function of hub den-
sity in Fig. 11 for the original networkdiamonds$ as well as
the network with assortative connectiofdus signs. It is
clear that there is very little difference between the behavior
A. Threshold behavior and crossover of the variance in the two cases. This appears to be the rea-

The threshold value of the transmission probabitigyis ~ Son for the gentle crossover.
a very crucial factor in the spread of disease. This quantity
may depend on the structure and topology of the network. In
the case of the spread of computer viruses on scalefree net- B. Immunization strategies

works, the threshold \_/alue turns out to be zero, leading to Studies of the SF networks have emphasized the impor-
very rapid spread of virus across such networks. In the case

of immunological diseases, the threshold probability is finite.t"’.mce of high connectivity nodes, and immunization strate-

In this section we examine the behavior of this quantity for9'€s which immunize nodes of high connectivity are thg most
our networks as a function of the hub density. successful. Howeyer, nodes of moderqte cqnneptmty can
The threshold transmission probabilify, is defined in PN Up néw regions to the spread of infection if they are
the following way. For a fixed run dftime steps, the thresh- connected to nodes which are far away. ReaI-W(_)rId epidemic
old value is defined to be the smallest value of the transmis€Vents have always been affected by the long-distance move-
sion probability for which at least 50% of the total number of Ments of causative agents into susceptible regi@].
susceptible sites are infected by half the run. Figure 1@0me recent studi¢87,3§ provide evidence for this. While
shows the behavior gf, against the number of hubs. The studies of the SW networks take cognizance of the fact that
diamonds show the observed behavior for the original netlong-range connections are important in the spread of infor-
work and the plus signs the behavior for the scheme Il netmation, it is never clear what fraction of connections in a
work when there are two assortatiyeub-to-hub connec- small world are really long range, since the network is al-
tions per hub. The data for the original network could beways stochastically generated using rewiring probabilities.
fitted using a functionF(x)=Dexd —Mx¢](x+1) %+C;. Local clusters also play a crucial role in the spread of infec-
The behavior for the scheme Il networkglus signg was  tion.
somewhat different and had to be fitted using another func- We try to isolate the contribution of long-range connec-
tion, G(x) =Dexd —Mx¢](x+1) %+C,, whereD=0.25, M tions and that of the local clustering property in information
=0.0054, {=0.975, £,=0.065, £&,=-0.13, C,=0.046, and disease spread on the network with two assortative con-
andC,=0.036. Thus, there is a change in the scaling behavrections per hub by the use of different immunization strat-
ior of the threshold probability between the original networkegies. Figure 12 plots the number of new infections as a
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g

local clusters with additional long-range bonds. We observed
this behavior at both low and high hub densities.

g

g

V. CONCLUSIONS

g

To summarize, in this paper we have studied information
spread on a two-dimensional communication network with
nodes of two types, ordinary nodes which are connected to
their nearest neighbors and hubs which are connected to all
nodes within a certain range of influence. The degree distri-
bution for this lattice is bimodal in nature, and has finite
variance. The average travel time for directed message trans-
fer between source and target on this lattice shows fat-fractal
behavior as a function of the hub density, however the intro-
duction of a small number of assortative connections be-
FIG. 12. The effect of immunization on the number of new tween the hubsscheme Il induces a crossover to power-law

infections when assortative bonds of length equal to or greater thahehawir forr:hls aveLage travel tlme. Ig thedcsse of scher;e I
100 LU are immunizeddiamond$, when hubs with assortative networks, where a short cut was introduced between end-to-

bonds of length greater than 100 LU are immunizbdxes, 117 ~ €nd hubs for consecutively overlapped hubs, a much milder
hubs are immunized on an average in this Lased when 117 ~Crossover was seen. We also study the spread of infection on
randomly chosen hubs are immunizéctosses The plot also  this network by the SIR process. The threshold level for the
shows the number of new infections as a function of t(mﬂase$ infection probablllty iS f|n|te for the netWOka W|th and W|th-
when the network has 400 hubs with two assortative connection§Ut assortative connections, due to the fact that both net-
per hub(the nonimmunized caseHere the infection probability Wworks have finite variance. However, the threshold level as a
p=0.25. function of hub density shows crossover behavior when as-
sortative connections are introduced when compared with the
original network. However, this crossover is gentle in com-

function of time for this network. The plus signs indicate the parison to that observed for the average travel times for the
. . N ; directed message transfer for the same scheme Il case. Thus,
number of new infections for the unimmunized network. The

N o . . . while network topology modifies the way in which informa-
first immunization strategy immunizes the bonds which con pology y

X tion spreads on a network, the effect appears to be stronger
nect hubs separated by a distance greater than or equal to directed processes than for undirected processes. We also
LU (this is the Manhattan distance between the two hUbS gy,dy the spread of infection and immunization strategies for

For this lattice the average number of bonds of this type ighis network, and conclude that local clustering plays as im-
about 17% of the total number of bonds. However, the hulhortant a role as the existence of assortative connections in
itself is not immunized and can infect the local cluster. It isthe rate of spread of infection. Thus assortative connections
clear that the immunization of the long-range bonds causeglay a more crucial role in message transfer processes than in
the number of new infections to decredsee plot with dia-  the spread of infection.

monds, and also causes the infection to spread more slowly. Our results can be of practical utility in a variety of con-
However, this effect is not pronounced. The second immunitexts. In the case of directed message transfer, at low values
zation strategy inoculates both the hubs which are connecteaf hub density, the average travel time between source and
by such long-range bonds so that no infection travels fronarget can be reduced very rapidly by the introduction of very
the hub to any of the nodes connected to it. The number ofew assortative connections per hub. This is a very efficient
new infections for this case is plotted with boxes in the samévay of reducing travel time without the introduction of new
figure. It is clear that the rate of spread of infection slowshubs. Long-range connections between hubs cut the travel
down, the number of new infections peaks at a much lowefime drastically in these cases. On the other hand, the exis-
value, and the distribution develops a long tail. The last plot!ence of local clusters which can connect to other local clus-
viz., the plot with crosses, shows the number of new infec!€rs(not necessarily distant oneseems to play an important

tions as a function of time if the same number of hubs iSrole in the spread of infection. Thus immunization strategies

immunized as in the last strategy, but if the hubs are ranyvhich target local clusters appear to be called for. It is thus

domly choserfi.e., the hubs chosen do not necessarily haVémportant to note that different elements of the network to-
long-range bondsit is interesting to note that there is very bology appear to be important for different types of informa-

little difference between the two distributions. Thus, the IocaltIon spread processes. We hope to explore this direction fur-

; . ther in future work.
cluster which connects to other local clustéret necessarily
distant onesappears to play a more crucial role in the spread
of infection than the existence of long-range bonds. This is
unlike the behavior seen earlier in the case of small-world
networks. Thus immunization strategies which target arbi-
trary local clusters are as successful as those which target We thank CSIR, India, for partial support for this work.
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