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Crossover behavior in a communication network
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~Received 2 December 2002; revised manuscript received 29 September 2003; published 30 December 2003!

We address the problem of message transfer in a communication network. The network consists of nodes
and links, with the nodes lying on a two-dimensional lattice. Each node has connections with its nearest
neighbors, whereas some special nodes, which are designated as hubs, have connections to all the sites within
a certain area of influence. The degree distribution for this network is bimodal in nature and has finite variance.
The distribution of travel times between two sites situated at a fixed distance on this lattice shows fat-fractal
behavior as a function of hub density. If extra assortative connections are now introduced between the hubs so
that each hub is connected to two or three other hubs, the distribution crosses over to power-law behavior.
Crossover behavior is also seen if end-to-end short cuts are introduced between hubs whose areas of influence
overlap, but this is much milder in nature. In yet another information transmission process, namely, the spread
of infection on the network with assortative connections, we again observed crossover behavior of another
type, viz., from one power law to another for the threshold values of disease transmission probability. Our
results are relevant for the understanding of the role of network topology in information spread processes.
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I. INTRODUCTION

In recent years there has been an unprecedented ris
interest in the study of networks and their properties@1,2#.
These networks can be basically regarded as a collectio
nodes linked by edges. The nodes represent individual e
ties, while the edges represent interaction between any
of nodes in the network. Many natural systems, as wel
engineered systems, can be represented by such netw
Some examples of such networks are found at large sp
scales, e.g., the internet or the power grid, while others ar
single organismic levels, e.g., metabolic pathways@1–3#.
The structure and connectivity properties of such netwo
and the capacity and degree of connectivity of their no
have important consequences for processes which occu
the network. Some examples of such processes are mes
transfer in communication networks, the spread of infectio
diseases in social networks, the spread of computer virus
computer networks, and avalanche spread in load-bea
networks @4–9#. Such network studies have been seen
have potential applications in different fields of science a
technology, including epidemiology and ecology.

Several different classes of network topologies have
tracted recent interest. These include small-world~SW! net-
work models which have short paths between any two no
and highly clustered connections@10#, and their variants
@4,7#, generalized families of small-world networks@11#, and
scalefree~SF! networks which incorporate the existence
‘‘hubs,’’ viz., nodes with many more connections than t
average node@12,13#. There have also been attempts to ch
acterize the topology of natural networks, using measu
such as average path lengths, clustering coefficients, de
distributions, and the existence of ‘‘network motifs’’@14#,
viz., patterns of interconnections occurring in complex n
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works at numbers that are significantly higher than those
randomized networks.

It is known that the nature of the network topology si
nificantly affects the manner in which spread processes o
on networks. A striking example of this was found by Klei
berg, where a decentralized algorithm was able to find v
short paths~resulting in very short delivery times for mes
sages! for a two-dimensional network where long-range co
nections followed the inverse square law. Another exam
where the topology of the network had a significant role
play is in the spread of computer viruses. It was seen
computer viruses can spread on the SF networks with z
transmission threshold@15,16# and that networks of differing
topologies have differing degrees of vulnerability to atta
@17–19# and different extents of error tolerance. The impo
tance of such studies from the point of view of applicatio
is obvious.

In this paper, we set up a communication network on
two-dimensional lattice. Communication networks based
two-dimensional lattices have been considered earlier in
context of search algorithms@11#, as well as in the context o
traffic on lattices with hosts and routers@20–24#. The lattice
we consider in this paper has two types of nodes, viz., re
lar nodes and hubs. Each regular node on the lattice
connections with its nearest neighbors, whereas some sp
nodes, which are designated as hubs, have connections
the sites within a certain area of influence. Thus, nodes f
ing within the influence area of a hub can directly intera
with the hub, or vice versa. The degree distribution of t
network is bimodal and has finite variance. We examine t
distinct spread processes on this lattice network as funct
of hub density. The distribution of travel times for a messa
transmitted between a fixed pair of sites for this lattice sho
fat-fractal behavior as a function of hub density. If ext
connections are now introduced between the hubs so
each hub is connected to two or three other hubs, the di
bution crosses over to power-law behavior. The end-to-
short cutting of hubs whose influence areas overlap also
©2003 The American Physical Society21-1
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duces crossover, but this is much milder in nature. We a
examined the process of disease transfer on this netwo
process that differs from message transfer in the fact that
a probabilistic process and not a directed transfer betwe
source and a target. Here again the transmission thres
plotted as a function of hub density crossed over from o
type of power-law behavior to another on the introduction
two extra connections per hub.

In Sec. II we set up the model of the communicati
network. In Sec. III we discuss the problem of directed m
sage transfer between source and target nodes on this
work. In Sec. IV we discuss the spread of information a
random process as in the spread of disease. The last se
summarizes our conclusions.

II. THE MODEL

As stated in the Introduction, the proposed network i
two-dimensional lattice of nodes where every node is c
nected to its nearest neighbors. A certain fraction of the t
nodes are designated as hubs, viz., as nodes which have
nections to all nodes within their area of influence, where
area of influence is defined as a square area around the
which accommodates (2k11)2 nodes, including the hub
node,k being the distance in lattice units~LU! from the hub
to the outermost node in any principal direction within t
square. All nodes within the influence area of a hub
termed its constituent nodes. A schematic representation
hub node is shown in Fig. 1. These hubs are randomly c
sen on the lattice maintaining a minimum distancedmin be-
tween any pair of hubs. This parameter (dmin) controls the
extent of overlap between the influence regions of the hu
See the two hubs ‘‘d’’ and ‘‘ e’’ in Fig. 1. The distance be-
tween them is unity, and their influence regions are ma
mally overlapped. As the number of hubs on the lattice g
up, the number of connections that a constituent node
have also goes up, as it increasingly acquires links with m
hubs because of the overlapping of the influence region
the hubs. Thus the model takes into account the fact
local clustering in a geographical neighborhood can oc
for many realistic models.

The hubs in this model connect to a fixed number
nodes, as in many realistic environments, where the num
of links that can attach to a given hub is limited by t
number of ports to the hub. We examine the influence t
the presence of hubs exerts on the connectivity distribu
of the network. In the absence of the hubs each node ha
same degree of connectivity and the degree distribu
~where the degree of a node is the number of nodes
connected to! is a d function with a single peak at 4. How
ever, the introduction of hubs leads to completely differe
connectivity patterns for the network. Due to the presence
hubs, the connectivity of the nodes ranges from 4~for the
regular nodes! to (2k11)221 ~for the hubs!. The degree of
the constituent nodes lies between the two extremes, b
equal toC14 where the constituent node lies in the ove
lapping influence area ofC hubs. The degree of the constitu
ent nodes is thus a function of the hub density, which c
trols the extent to which the influence areas of different h
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overlap. Figure 2 shows a typical distribution of the degr
of connectivity of nodes of all types for a lattice of siz
1003100, k53, dmin51, and the hub density is 4.0%. A
expected, there are two peaks in the distribution: one, a s
one, at (2k11)2

21 corresponding to the degree of connectivity of the hu
and the other around 4~the degree of the regular sites! with
a spread around the value. This spread comes from the
stituent nodes of hubs with overlapping regions of influen
It is clear that the degree distribution does not fall into eith
of the two broad classes of networks—the SW and SF n

FIG. 1. A two-dimensional lattice of 21321 nodes. The top left
corner shows a hub~a filled circle! which is directly connected to
all its constituent nodes within the square shown by the das
lines. The side of the square is approximately equal to 2k, shown
for k52. The square shown is called the influence area of a hu
regular node that is neither a hub nor a constituent node has
edges connected to its nearest neighbors~shown in the top right
corner!. A typical path between a source nodeSand a target nodeT
is shown with the labeled sites. Note that it passes through th
hubs, namely,a, b, andc ~filled circles!. After scheme I the distance
betweenb andc is covered in one step. The shortcut is shown
the dashed arrow fromb to c.

FIG. 2. A typical connectivity distribution for the propose
communication network.Kn gives the degree of connectivity of
node withKn other nodes in the lattice. The lattice size is 1003100,
k53, and the hub density is 4.0%.
1-2
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CROSSOVER BEHAVIOR IN A COMMUNICATION NETWORK PHYSICAL REVIEW E68, 066121 ~2003!
works. It also differs from the connectivity patterns of th
random graphs.~See Ref.@13# for the connectivity distribu-
tions for the SW and SF networks as well as those of rand
graphs, and Refs.@25,26# for scalefree models with loca
clusters and geographic separation.! The variance in the de
gree distribution of our model is finite unlike that in the ca
of scalefree networks where the variance is infinite. This f
can have very important consequences for informat
spread processes on a network. The importance of the
ance in the spread of disease has already been noted i
case of scalefree networks. It is therefore interesting to
vestigate spreading processes in models such as ours w
do not have infinite variance, and to compare them w
spreading processes seen in the case of other networks,
scalefree networks with and without local clustering in
geographic neighborhood.

We now study two types of communication problems
this network, viz., the problem of message transfer and
of the spread of infectious disease.

III. THE PROBLEM OF MESSAGE TRANSFER

We study the transfer of a message from an arbitr
source node to an arbitrary target node on the lattice. E
~ordinary! node transfers the message to the node neare
it in the direction which will minimize the distance from th
current message holder to the target. When any constit
node of a hub is the current message holder, then the n
directly sends it to the hub. The lattice distance between
sender node and the hub is just one hop because of d
communication between them, thereby speeding up the
cess of message transmission. If the hub is the cur
message holder the message is forwarded to one of the
stituent nodes within its influence area, the choice of c
stituent node being made by minimizing the distance to
target. Thus the presence of hubs on the lattice increase
message transfer speed along the path, and the total t
time depends primarily on how many hubs fall on the p
for the given influence radiusk. A typical travel path for such
a lattice is shown in Fig. 1 and is also indicated by the la
‘‘ O’’ in Fig. 3.

A. Speed enhancement schemes

It is clear that the presence of hubs on the lattice ma
the process of the message transfer faster than the situ
when there are no hubs. However, there is further scop
enhance the speed of transmission. Here we discuss
speed enhancing schemes which can be practically a
cable to the communication process.

Scheme I.Whenever there is an overlap between influen
areas of hubs, then the message is transferred from the
hub to second, then to the third, and so on. Intermed
constituent nodes do not participate in the process of m
sage transfer towards the target. For example, if there is
overlap between the influence regions of two hubs, nam
A andB, along the path, then after receiving the message
first recipient constituent node ofA directly forwards it to its
hubA, which directly sends it toB, from which the message
is subsequently sent to the second recipient constituent n
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of B. The second recipient node ofA and the first recipient
node ofB here do not take part in the message transfer. T
scheme, in essence, introduces a single short cut for
hops per pair of overlapped hubs in the travel path. A typi
travel path for this scheme is indicated by the label ‘‘I ’’ in
Fig. 3. As we will see in the following section, the introdu
tion of this scheme, leads to an increase in the travel sp
and a reduction in the message delivery time. However,
actual reduction in travel time for a given value ofk crucially
depends on the extent of overlap, which in turn depends
the minimum distancedmin between hub nodes, as well as o
the hub density. For example, for the travel pathI of Fig. 3,
only one pair of hubs overlap so that the reduction in tra
time is just one unit.

The minimum distance between any pair of hubs,dmin ,
decides the range of overlap between the influence region
the hubs in our network. For any choice ofk at a fixed hub
density, a hub distribution withdmin51 on the lattice guar-
antees that the separation between any pairs of hubs is e
to or greater than 1. It is easy to see that the areas of in
ence of a pair of hubs withdmin51 have the maximum
overlap. See Fig. 1. On the other hand,dmin52k11 for a
givenk results in no overlapping hubs on the lattice. Sche
I cannot be implemented for this case. Distributions of hu
with other intermediate values ofdmin have overlaps that lie
between the two extremes.

Scheme II.In the second scheme to speed up the comm
nication process we connect individual hubs with a few~in
this paper, typically two or three! other hubs selected a
random. These connections, where nodes preferentially
connected to nodes having a similar degree of connecti
in the network, are called assortative connections@27,28#.
Under this scheme, when a hub becomes the current m
sage holder, it first tries to send the message through on
its assortative linkages to another hub which, among all
quaintances of the hub, happens to be the nearest to
target. If the current message holder hub cannot utilize
assortative linkages because of unsuitable locations of
end-point hubs, the message is sent to the constitu
node nearest to the target. A typical travel path betwe

FIG. 3. Typical travel paths between sourceS and targetT. The
label ‘‘O’’ indicates a path on the original lattice, ‘‘I ’’ a path on the
scheme I lattice and ‘‘II ’’ indicates a path when the lattice wa
modified by the scheme II. The lattice distance between for
source and target node is 142 LU. The lattice size is 1003100, k
53, and the hub density is 0.5%.
1-3
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B. K. SINGH AND N. GUPTE PHYSICAL REVIEW E68, 066121 ~2003!
source ‘‘S’’ and target ‘‘T’’ is indicated by the label ‘‘II ’’ in
Fig. 3. Here the Manhattan distanceDst between source an
target is 142, where the Manhattan distance is defined
Dst5u is2 i t u1u js2 j t u and (is, js) and (i t , j t ) are the coor-
dinates for the source and the target, respectively. Howe
the travel path labeledII needs just 50 steps to travel b
tween the source and target. In comparison, the path lab
O needs 95 steps and that labeledI needs 94 steps.

The simulations are carried out as follows. Two nodes
selected as the source and the target at random from a la
of a given size. The distance between them, denoted byDst ,
is chosen to be the Manhattan distance. The number of s
required in delivery of the message from the source to
target are counted for 50 realizations of hubs for a given
density. Then, the two nodes, i.e., the source and the ta
nodes, are replaced by two other nodes selected at ran
from the lattice, keepingDst unchanged. Again the messag
transmission steps are counted for the same number of
realizations. This is repeated for 1000 pairs of source
target nodes for a particular hub density. It should be no
that the order of averaging makes no difference. The valu
dmin and k used throughout the paper are 1 and 3, resp
tively, unless otherwise specified.

B. Crossover behavior

The average travel time between a source and a ta
fixed distance apart is a good measure of the efficiency of
network for message transmission. This clearly depends
the density of hubs in the network, as well as on the way
which these hubs are connected. We study the behavio
average travel times as a function of hub density for a fix
Manhattan distanceDst between source and target. O
simulations were carried out for a lattice of 5003500 nodes,
Dst5712, for the original networks as well as the networ
modified by schemes I and II. Figure 4 shows the dep
dence of the average travel times,tavg , as a function of hub
density for the original networks~diamonds! for dmin51.
The average travel times decrease exponentially as the
density increases. The data can be fitted well by the ex
nential function @29# f 1(x)5Q1exp@2A1x

a1#, where a1
50.4482,A150.0142, andQ15730. This can be rewritten
in the form f 1(x)5Q1exp@2(x/x0)

a#, wherex0 is (1/A1)1/a1

and has the approximate value 13 259. Expanding this we
f 1(x)5Q1@12X1(X2/2!)2•••#, whereX5(x/x0)a1. Re-
taining terms to the lowest order, we see that the depend
of average travel times on hub density is given bytavg

'Q1(12arhub
a1 ), an instance of fat-fractal-like behavior. W

plot the average travel times as a function of hub density
the same plot for the scheme I and scheme II networks.
behavior oftavg in the case of scheme I networks~plus signs!
is slightly different from that of the original network cas
and the exponential function acquires a mild power-law c
rection. The data for scheme I networks is fitted well by
function f 2(x)5Q2exp@2A2x

a2#x2d, where a250.46, A2
50.0145, Q25735, andd50.000 05. Scheme II network
show distinctly different behavior. The scheme II netwo
data ~boxes for two assortative connections and crosses
three assortative connections! can be fitted by a function
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g(x)5Sx2b, whereb50.2 andS is a positive constant and
thus shows power-law behavior. We note that the sa
power law fits both sets of scheme II data.

Figure 5 shows the same data as Fig. 4 on a log-log p
Here the drastic difference seen for the behavior of aver
travel times in the case of networks with scheme II ope
tional compared to the other two networks can be clea
seen. The log-log plot oftavg against the hub density is
straight line with slopeb520.2. Thus tavg'rhub

2b shows
power-law behavior. It is again clear that the same power
is seen for the two scheme II cases. Thus the addition
very small number of assortative connections per hub
induced a crossover to power-law behavior from the f
fractal behavior seen in the nonassortative cases. The ra
fall-off of average travel times with increase in hub density
much faster for the assortative case even in the case of

FIG. 4. A plot of average travel times,tavg , vs number of hubs
for the original network~diamonds!, the scheme I network~plus
signs!, and the scheme II network~boxes! for two extra assortative
connections and~crosses! three extra assortative connections p
hub. Here,dmin51. The best-fit line for the original network~dia-
monds! was given by the functionf 1(x)5Q1exp@2A1x

a1#, where
a150.4482,A150.0142, andQ15730. The behavior oftavg for
the scheme I network is slightly different and the exponen
function needs a mild power-law correction given byf 2(x)
5Q2exp@2A2x

a2#x2d, wherea250.46, A250.0145,Q25735, and
d50.000 05. For scheme II networks the best-fit lines were giv
by the functiong(x)5Sx2b, whereb50.2 andS5875 ~boxes!,
800 ~crosses!.

FIG. 5. The same data as in Fig. 4 is plotted on the log-log sc
These plots clearly show crossover in scaling behavior from
fat-fractal type seen for the original as well as the scheme I n
works to the power-law behavior for the scheme II network. No
that the slope of the two parallel lines~the scheme II network! is
20.2.
1-4
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CROSSOVER BEHAVIOR IN A COMMUNICATION NETWORK PHYSICAL REVIEW E68, 066121 ~2003!
hub densities. Thus the addition of assortative connect
can increase the communication efficiency of networks w
out increasing the number of hubs in the network especi
at low hub densities.

We note that the crossover from fat-fractal behavior
power-law behavior is insensitive to perturbations of t
regular lattice geometry. We verified that up to 10% variat
in the x and y locations in the location of the hub node
makes no difference to the crossover behavior, although
numerical values of the exponents change. Similar pertu
tions to the location of all the nodes in the lattice also ma
no difference to the existence of the crossover. Changing
shape of the influence areas from square to circular reg
introduces a variation in the degree of each hub, and al
perturbation to the overall degree distribution. We note t
the crossover is robust to this change, as well. Figur
shows the behavior of the hub density for the lattice netw
with a perturbed node distribution with a circular influen
area for the hubs, with all other parameters as in Figs. 4
5. It is clear that the crossover is completely stable to per
bation. The travel times can be fitted by the functionsF(x)
5635 exp(20.0104x0.417) for the perturbed lattice with
no assortative connections, and by the functionG(x)
5735x20.165 for the perturbed case with assortative conn
tions. We note that the exponentb now takes the value 0.16
from the value 0.2 seen earlier, and the power-lawa1
changes to 0.417 from the value 0.4482, but the constanA1
barely changes fromA150.0142 toA150.0104, a change in
the third place after the decimal. Thus the fat-fractal behav
of the typeC(12x1

a) remains unaltered due to the perturb
tion as does the power-law behavior for the network w
assortative connections. Thus, the crossover is robust to
turbation.

FIG. 6. The parameter values are the same as in Fig. 4 ex
for the following. First, the influence area for this figure is circu
with a radius ofk. Second, every node of the lattice network h
been displaced by60.1 from its earlier position as in Fig. 4. Th
functions for the fitted lines areF(x)5635 exp(20.0104x0.417) for
diamonds~no assortative connections!, and G(x)5735x20.165 for
pluses~assortative connections!.
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C. Distribution of travel times

The probability distributions of travel times on the ne
work for the three cases above can be seen in Figs. 7 an
It is clear that as hub densities increase, the peak shifts
wards short travel times for the original network. When t
message was transmitted using scheme I, the distribu
changes very slightly with virtually no effect at low hu
densities. However, when scheme II was operational, the
tribution showed a marked change~see Fig. 8!. The distribu-
tions of Fig. 7~the original lattice and scheme I! are sharply
peaked about a mean travel time and are symmetric abou
mean whereas those of Fig. 8 show a much wider spread
are skewed. There is also a difference between the two
tributions as shown in Fig. 8. At low hub densities the d
tribution is bimodal, whereas the bimodality is smoothed o
at higher hub density. The right peak is reminiscent of
distribution for a lattice without any hub-to-hub connectio
at low hub density. Overall, the new distribution indicat
that even sparse hub-to-hub connections are quite capab
inducing short paths at all hub densities. The distribution a
shifts to lower values of travel times demonstrating the s
cess of the short cutting assortative strategy~scheme II!.

pt

FIG. 7. The distributions of paths in terms of travel times f
Dst5712 on a lattice of 5003500. The distributions shown are fo
dmin51. The curve indicated by ‘‘A’’ is for a total of 100 hubs and
the curve ‘‘B’’ for a total of 5000 hubs. Plots with diamonds an
plus signs use the original network data while the boxes and cro
correspond to scheme I data.

FIG. 8. The distributions of paths in terms of travel times for t
same value ofDst when scheme II is operational. Diamonds are f
a total of 100 hubs, plus signs for a total of 200 hubs, and boxes
a total of 5000 hubs. The lattice size,Dst , anddmin are the same as
in Fig. 7. The distributions show bimodality~two peaks! at lower
hub densities~diamonds and plus signs!, and this bimodality disap-
pears at higher hub densities~boxes!.
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IV. COMMUNICATION NETWORKS VERSUS SPREAD
OF INFECTIONS

The message transfer problem discussed above invo
the consistent directed transfer of a message towards a ta
Each temporary message holder transfers the message,
probability one, in the direction which takes the messa
towards the target. Other types of processes of informa
spread such as the spread of computer viruses, infect
disease, rumors, popular fashions, etc. have distinctly dif
ent mechanisms of spread. These processes are not dir
processes, and incorporate stochastic elements in the me
nism of spread. Hence communication networks which m
be very efficient for information dissemination of the fir
type, may not be at all, or less suitable, for the second k
In this section we examine the spread of an infection in
population of susceptible individuals for our network. T
population contains both infected and susceptible indivi
als. The individuals constitute the nodes of the network,
social interactions among them constitute the edges by w
infection can be transferred from one node to another
similar model is also applicable to the spread of compu
viruses. We consider a single point entry for infection in o
study.

Many recent studies have focused on this kind of spr
of diseases on networks@4–8,15,16#. A susceptible indi-
vidual can get infected~with some probability! only when he
directly or indirectly encounters infectious individuals in th
population. The structure of the contact network has imp
tant implications for three things. The first is the rate
which an infection can spread across the network, the sec
is the transmission threshold, i.e., the smallest probability
infection with which the infection can spread to a significa
fraction of the nodes of the network, and the third is t
choice of an effective immunization strategy.

Recent studies of disease spreading viruses or comp
virus spreads on networks of the SF type show that the p
sibility of these viruses being persistent in the populati
and of their being resurrected causing repeated epidemic
almost independent of any transmission threshold@15#. Thus,
in the case of the SF networks, all that is needed for
infection to spread throughout the population is the occ
rence of a single-time point entry of the infection into t
population. Since it has been argued that in the case of s
ally transmitted diseases, particularly that of the HIV/AID
infection, the underlying contact networks have scalef
character@30#, this result also has implications for the spre
of such diseases. However, the existence of a vanis
threshold in the case of human disease does not fit well w
the conventional epidemiologist’s viewpoint. The infini
variance of the node connectivity in the SF network has b
identified as the causative agent for the vanishing thresh
seen in such networks@27,31,32#. Thus, though traditiona
epidemiology acknowledges the importance of heterogen
in the rapid spatial spread of diseases such as HIV/AIDS,
extreme heterogeneity seen in SF networks may not m
them good candidates for modeling other kinds of infect
in human or animal populations, where social contacts g
erally do not conform fully with the SF characteristic@3,33#.
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Hence the study of disease spread on other types of netw
such as ours, which have finite variance, is important.

As mentioned above, network topologies also determ
the choice of effective immunization strategies. Recent st
ies on immunization strategies for efficient and succes
controlling of epidemics on SF networks have unanimou
advocated the immunization of the most connected no
@27,34,35#. The choice of immunization strategy would hav
to be quite different in the case of networks where the no
connectivity distribution is not of the SF type. Even in th
case of SF networks, immunization strategies which conc
trate on immunizing the most connected nodes do not t
into account the finite probability that a few infected node
which may not be the most connected nodes on the netw
might have long-range connections to new regions of
susceptible population, and hence, could transmit the dis
to regions quite distant from their place of origin where
fresh epidemic can ensue. Our network, which incorpora
geographic distance and local clustering, is useful for suc
study.

We studied information spread via an infection process
the susceptible-infected-recovered type on this network.
process has the following features:~i! all nodes are equally
susceptible,~ii ! infection always starts from a single site,~iii !
an infectious node can infect any of the nodes it is connec
to with probabilityp, ~iv! this transmission probability is the
same, i.e., it has the valuep irrespective of whether the in
fected node is a hub or an ordinary node, and~v! none of the
nodes get infected twice. Also once a node becomes infec
it remains infected until it infects any one of its neighbo
Here we assume that within a typical infectious period
infected node certainly infects, at least, one susceptible n
In this study we restrict ourselves to a single episode
epidemic break.

We study the manner in which the infection spreads o
1003100 node lattice. Figure 9 shows the manner in wh
the infection wave front from a single infected node trav

FIG. 9. The spread of infection on a lattice with no hubs~top
row, labeled A!, on a lattice with hubs~middle row, labeled B!, and
a lattice with hubs with two assortative connections~bottom row,
labeled C!. Snapshots of the infection spread are taken att55,
t510, andt515 ~column labels! for each case. Here the infectio
probability p50.25.
1-6



w

rly
fo

n

ti
.
n
t

a
ite
fo

-
i

o
1
e
e
e

be

n

a
rk

ntle
tic
for
hub
oss-
s but
in
ap-

sh-
en-

ior
rea-

or-
te-
ost
can
are
mic
ove-

that
for-

a
al-
es.
ec-

c-
on
con-
at-
s a

io
fo

nc-

CROSSOVER BEHAVIOR IN A COMMUNICATION NETWORK PHYSICAL REVIEW E68, 066121 ~2003!
on a lattice with no hubs att55, t510, and t515 ~top
row, labeled A!, on a lattice with hubs~middle row, labeled
B! at the same time steps, and a lattice with hubs with t
assortative connections~bottom row, labeled C!. The rapid
spread of infection in the bottom row can be very clea
seen. All the results in this section study infection spread
a 1003100 lattice with 400 hubs withdmin51 and k53.
Other parameters are given in the figure caption. Each ru
taken for 400 time steps.

A. Threshold behavior and crossover

The threshold value of the transmission probabilitypth is
a very crucial factor in the spread of disease. This quan
may depend on the structure and topology of the network
the case of the spread of computer viruses on scalefree
works, the threshold value turns out to be zero, leading
very rapid spread of virus across such networks. In the c
of immunological diseases, the threshold probability is fin
In this section we examine the behavior of this quantity
our networks as a function of the hub density.

The threshold transmission probabilitypth is defined in
the following way. For a fixed run oft time steps, the thresh
old value is defined to be the smallest value of the transm
sion probability for which at least 50% of the total number
susceptible sites are infected by half the run. Figure
shows the behavior ofpth against the number of hubs. Th
diamonds show the observed behavior for the original n
work and the plus signs the behavior for the scheme II n
work when there are two assortative~hub-to-hub! connec-
tions per hub. The data for the original network could
fitted using a functionF(x)5Dexp@2Mxz#(x11)2j11C1.
The behavior for the scheme II networks~plus signs! was
somewhat different and had to be fitted using another fu
tion, G(x)5Dexp@2Mxz#(x11)2j21C2, whereD50.25, M
50.0054, z50.975, j150.065, j2520.13, C150.046,
andC250.036. Thus, there is a change in the scaling beh
ior of the threshold probability between the original netwo

FIG. 10. The behavior of the threshold values of transmiss
probabilitypth as the number of hubs increases. The best-fit line
plot I ~for the original lattice! was drawn using the functionG(x)
5Dexp@2Mxz#(x11)2j11C1. The behavior for the lattices with two
assortative connections per hub, shown by plotII , had to be fitted
using another functionH(x)5Dexp@2Mxz#(x11)2j21C2, where
D50.25, M50.0054, z50.975, j150.065, j2520.13, C1

50.046, andC250.036.
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and the scheme II case. However this crossover is a ge
change from one power law to another, unlike the dras
change seen for the behavior of the average travel times
the same case. The change is more pronounced at low
density as in the other case. The reason as to why the cr
over is drastic in the case of the message transfer proces
is more gentle in this case of the infection spread may lie
the fact that in the case of disease spread, the variance
pears to be the crucial quantity which determines the thre
old behavior. We plot the variance as a function of hub d
sity in Fig. 11 for the original network~diamonds! as well as
the network with assortative connections~plus signs!. It is
clear that there is very little difference between the behav
of the variance in the two cases. This appears to be the
son for the gentle crossover.

B. Immunization strategies

Studies of the SF networks have emphasized the imp
tance of high connectivity nodes, and immunization stra
gies which immunize nodes of high connectivity are the m
successful. However, nodes of moderate connectivity
open up new regions to the spread of infection if they
connected to nodes which are far away. Real-world epide
events have always been affected by the long-distance m
ments of causative agents into susceptible regions@36#.
Some recent studies@37,38# provide evidence for this. While
studies of the SW networks take cognizance of the fact
long-range connections are important in the spread of in
mation, it is never clear what fraction of connections in
small world are really long range, since the network is
ways stochastically generated using rewiring probabiliti
Local clusters also play a crucial role in the spread of inf
tion.

We try to isolate the contribution of long-range conne
tions and that of the local clustering property in informati
and disease spread on the network with two assortative
nections per hub by the use of different immunization str
egies. Figure 12 plots the number of new infections a

n
r

FIG. 11. The plot shows the variance in connectivity as a fu
tion of hub density for two cases—the original~diamonds! and
scheme II networks~pluses!. The lattice size is 1003100,k53, and
two assortative connections per hub for the strategy II case.
1-7
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B. K. SINGH AND N. GUPTE PHYSICAL REVIEW E68, 066121 ~2003!
function of time for this network. The plus signs indicate t
number of new infections for the unimmunized network. T
first immunization strategy immunizes the bonds which c
nect hubs separated by a distance greater than or equal to
LU ~this is the Manhattan distance between the two hu!.
For this lattice the average number of bonds of this type
about 17% of the total number of bonds. However, the h
itself is not immunized and can infect the local cluster. It
clear that the immunization of the long-range bonds cau
the number of new infections to decrease~see plot with dia-
monds!, and also causes the infection to spread more slo
However, this effect is not pronounced. The second immu
zation strategy inoculates both the hubs which are conne
by such long-range bonds so that no infection travels fr
the hub to any of the nodes connected to it. The numbe
new infections for this case is plotted with boxes in the sa
figure. It is clear that the rate of spread of infection slo
down, the number of new infections peaks at a much low
value, and the distribution develops a long tail. The last p
viz., the plot with crosses, shows the number of new inf
tions as a function of time if the same number of hubs
immunized as in the last strategy, but if the hubs are r
domly chosen~i.e., the hubs chosen do not necessarily ha
long-range bonds! it is interesting to note that there is ver
little difference between the two distributions. Thus, the lo
cluster which connects to other local clusters~not necessarily
distant ones! appears to play a more crucial role in the spre
of infection than the existence of long-range bonds. This
unlike the behavior seen earlier in the case of small-wo
networks. Thus immunization strategies which target a
trary local clusters are as successful as those which ta

FIG. 12. The effect of immunization on the number of ne
infections when assortative bonds of length equal to or greater
100 LU are immunized~diamonds!, when hubs with assortative
bonds of length greater than 100 LU are immunized~boxes, 117
hubs are immunized on an average in this case!, and when 117
randomly chosen hubs are immunized~crosses!. The plot also
shows the number of new infections as a function of time~pluses!
when the network has 400 hubs with two assortative connect
per hub ~the nonimmunized case!. Here the infection probability
p50.25.
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local clusters with additional long-range bonds. We obser
this behavior at both low and high hub densities.

V. CONCLUSIONS

To summarize, in this paper we have studied informat
spread on a two-dimensional communication network w
nodes of two types, ordinary nodes which are connecte
their nearest neighbors and hubs which are connected t
nodes within a certain range of influence. The degree dis
bution for this lattice is bimodal in nature, and has fin
variance. The average travel time for directed message tr
fer between source and target on this lattice shows fat-fra
behavior as a function of the hub density, however the int
duction of a small number of assortative connections
tween the hubs~scheme II! induces a crossover to power-la
behavior for this average travel time. In the case of schem
networks, where a short cut was introduced between end
end hubs for consecutively overlapped hubs, a much mi
crossover was seen. We also study the spread of infectio
this network by the SIR process. The threshold level for
infection probability is finite for the networks with and with
out assortative connections, due to the fact that both
works have finite variance. However, the threshold level a
function of hub density shows crossover behavior when
sortative connections are introduced when compared with
original network. However, this crossover is gentle in co
parison to that observed for the average travel times for
directed message transfer for the same scheme II case. T
while network topology modifies the way in which informa
tion spreads on a network, the effect appears to be stro
for directed processes than for undirected processes. We
study the spread of infection and immunization strategies
this network, and conclude that local clustering plays as
portant a role as the existence of assortative connection
the rate of spread of infection. Thus assortative connecti
play a more crucial role in message transfer processes tha
the spread of infection.

Our results can be of practical utility in a variety of co
texts. In the case of directed message transfer, at low va
of hub density, the average travel time between source
target can be reduced very rapidly by the introduction of v
few assortative connections per hub. This is a very effici
way of reducing travel time without the introduction of ne
hubs. Long-range connections between hubs cut the tr
time drastically in these cases. On the other hand, the e
tence of local clusters which can connect to other local cl
ters~not necessarily distant ones! seems to play an importan
role in the spread of infection. Thus immunization strateg
which target local clusters appear to be called for. It is th
important to note that different elements of the network
pology appear to be important for different types of inform
tion spread processes. We hope to explore this direction
ther in future work.
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